The cellular labile iron pool and intracellular ferritin in K562 cells.
نویسندگان
چکیده
The labile iron pool (LIP) harbors the metabolically active and regulatory forms of cellular iron. We assessed the role of intracellular ferritin in the maintenance of intracellular LIP levels. Treating K562 cells with the permeant chelator isonicotinoyl salicylaldehyde hydrazone reduced the LIP from 0.8 to 0.2 micromol/L, as monitored by the metalo-sensing probe calcein. When cells were reincubated in serum-free and chelator-free medium, the LIP partially recovered in a complex pattern. The first component of the LIP to reappear was relatively small and occurred within 1 hour, whereas the second was larger and relatively slow to occur, paralleling the decline in intracellular ferritin level (t1/2= 8 hours). Protease inhibitors such as leupeptin suppressed both the changes in ferritin levels and cellular LIP recovery after chelation. The changes in the LIP were also inversely reflected in the activity of iron regulatory protein (IRP). The 2 ferritin subunits, H and L, behaved qualitatively similarly in response to long-term treatments with the iron chelator deferoxamine, although L-ferritin declined more rapidly, resulting in a 4-fold higher H/L-ferritin ratio. The decline in L-ferritin, but not H-ferritin, was partially attenuated by the lysosomotrophic agent, chloroquine; on the other hand, antiproteases inhibited the degradation of both subunits to the same extent. These findings indicate that, after acute LIP depletion with fast-acting chelators, iron can be mobilized into the LIP from intracellular sources. The underlying mechanisms can be kinetically analyzed into components associated with fast release from accessible cellular sources and slow release from cytosolic ferritin via proteolysis. Because these iron forms are known to be redox-active, our studies are important for understanding the biological effects of cellular iron chelation.
منابع مشابه
Repression of the heavy ferritin chain increases the labile iron pool of human K562 cells.
The role of ferritin in the modulation of the labile iron pool was examined by repressing the heavy subunit of ferritin in K562 cells transfected with an antisense construct. Repression of the heavy ferritin subunit evoked an increase in the chemical levels and pro-oxidant activity of the labile iron pool and, in turn, caused a reduced expression of transferrin receptors and increased expressio...
متن کاملRED CELLS Repression of ferritin expression increases the labile iron pool, oxidative stress, and short-term growth of human erythroleukemia cells
The role of ferritin expression on the labile iron pool of cells and its implications for the control of cell proliferation were assessed. Antisense oligodeoxynucleotides were used as tools for modulating the expression of heavy and light ferritin subunits of K562 cells. mRNA and protein levels of each subunit were markedly reduced by 2-day treatment with antisense probes against the respective...
متن کاملRepression of ferritin expression increases the labile iron pool, oxidative stress, and short-term growth of human erythroleukemia cells.
The role of ferritin expression on the labile iron pool of cells and its implications for the control of cell proliferation were assessed. Antisense oligodeoxynucleotides were used as tools for modulating the expression of heavy and light ferritin subunits of K562 cells. mRNA and protein levels of each subunit were markedly reduced by 2-day treatment with antisense probes against the respective...
متن کاملRepression of ferritin expression modulates cell responsiveness to H-ras-induced growth.
We assessed the role of the cell labile iron pool in mediating oncogene-induced cell proliferation via repression of ferritin expression. When HEK-293 cells, engineered to inducibly express either active (+) or dominant-negative (-) forms of the H-ras oncogene, were treated with antisense nucleotides to ferritin subunits they displayed (a) decreased ferritin levels, (b) increased labile iron po...
متن کاملRegulation of intracellular iron distribution in K562 human erythroleukemia cells.
Following a pulse with 59Fe-transferrin, K562 erythroleukemia cells incorporate a significant amount of 59Fe into ferritin. Conditions or manipulations which alter the supply of iron to cells result in changes in the rate of ferritin biosynthesis with consequent variations in the size of the ferritin pool. Overnight exposure to iron donors such as diferric transferrin or hemin increases the fer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 94 6 شماره
صفحات -
تاریخ انتشار 1999